skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Dorrance, Anne"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Functional magnetic resonance imaging faces inherent challenges when applied to deep-brain areas in rodents, e.g. entorhinal cortex, due to the signal loss near the ear cavities induced by susceptibility artifacts and reduced sensitivity induced by the long distance from the surface array coil. Given the pivotal roles of deep brain regions in various diseases, optimized imaging techniques are needed. To mitigate susceptibility-induced signal losses, we introduced baby cream into the middle ear. To enhance the detection sensitivity of deep brain regions, we implemented inductively coupled ear-bars, resulting in approximately a 2-fold increase in sensitivity in entorhinal cortex. Notably, the inductively coupled ear-bar can be seamlessly integrated as an add-on device, without necessitating modifications to the scanner interface. To underscore the versatility of inductively coupled ear-bars, we conducted echo-planner imaging-based task functional magnetic resonance imaging in rats modeling Alzheimer’s disease. As a proof of concept, we also demonstrated resting-state-functional magnetic resonance imaging connectivity maps originating from the left entorhinal cortex—a central hub for memory and navigation networks-to amygdala hippocampal area, Insular Cortex, Prelimbic Systems, Cingulate Cortex, Secondary Visual Cortex, and Motor Cortex. This work demonstrates an optimized procedure for acquiring large-scale networks emanating from a previously challenging seed region by conventional magnetic resonance imaging detectors, thereby facilitating improved observation of functional magnetic resonance imaging outcomes. 
    more » « less
  2. Abstract BackgroundSoybean gene functions cannot be easily interrogated through transgenic disruption (knock-out) of genes-of-interest, or transgenic overexpression of proteins-of-interest, because soybean transformation is time-consuming and technically challenging. An attractive alternative is to administer transient gene silencing or overexpression with a plant virus-based vector. However, existing virus-induced gene silencing (VIGS) and/or overexpression vectors suitable for soybean have various drawbacks that hinder their widespread adoption. ResultsWe describe the development of a new vector based on cowpea severe mosaic virus (CPSMV), a plus-strand RNA virus with its genome divided into two RNA segments, RNA1 and RNA2. This vector, designated FZ, incorporates a cloning site in the RNA2 cDNA, permitting insertion of nonviral sequences. When paired with an optimized RNA1 construct, FZ readily infects bothNicotiana benthamianaand soybean. As a result, FZ constructs destined for soybean can be first delivered toN. benthamianain order to propagate the modified viruses to high titers. FZ-based silencing constructs induced robust silencing of phytoene desaturase genes inN. benthamiana, multiple soybean accessions, and cowpea. Meanwhile, FZ supported systemic expression of fluorescent proteins mNeonGreen and mCherry inN. benthamianaand soybean. Finally, FZ-mediated expression of the Arabidopsis transcription factor MYB75 causedN. benthamianato bear brown leaves and purple, twisted flowers, indicating that MYB75 retained the function of activating anthocyanin synthesis pathways in a different plant. ConclusionsThe new CPSMV-derived FZ vector provides a convenient and versatile soybean functional genomics tool that is expected to accelerate the characterization of soybean genes controlling crucial productivity traits. 
    more » « less
  3. Larracuente, Amanda (Ed.)
    Abstract Accessory genes are variably present among members of a species and are a reservoir of adaptive functions. In bacteria, differences in gene distributions among individuals largely result from mobile elements that acquire and disperse accessory genes as cargo. In contrast, the impact of cargo-carrying elements on eukaryotic evolution remains largely unknown. Here, we show that variation in genome content within multiple fungal species is facilitated by Starships, a newly discovered group of massive mobile elements that are 110 kb long on average, share conserved components, and carry diverse arrays of accessory genes. We identified hundreds of Starship-like regions across every major class of filamentous Ascomycetes, including 28 distinct Starships that range from 27 to 393 kb and last shared a common ancestor ca. 400 Ma. Using new long-read assemblies of the plant pathogen Macrophomina phaseolina, we characterize four additional Starships whose activities contribute to standing variation in genome structure and content. One of these elements, Voyager, inserts into 5S rDNA and contains a candidate virulence factor whose increasing copy number has contrasting associations with pathogenic and saprophytic growth, suggesting Voyager’s activity underlies an ecological trade-off. We propose that Starships are eukaryotic analogs of bacterial integrative and conjugative elements based on parallels between their conserved components and may therefore represent the first dedicated agents of active gene transfer in eukaryotes. Our results suggest that Starships have shaped the content and structure of fungal genomes for millions of years and reveal a new concerted route for evolution throughout an entire eukaryotic phylum. 
    more » « less
  4. Phytophthora is a long-established, well known and globally important genus of plant pathogens. Phylogenetic evidence has shown that the biologically distinct, obligate biotrophic downy mildews evolved from Phytophthora at least twice. Since, cladistically, this renders Phytophthora ‘paraphyletic’, it has been proposed that Phytophthora evolutionary clades be split into multiple genera (Runge et al. 2011; Crous et al. 2021; Thines et al. 2023; Thines 2024). In this letter, we review arguments for the retention of the generic name Phytophthora with a broad circumscription made by Brasier et al. (2022) and by many delegates at an open workshop organized by the American Phytopathological Society. We present our well-considered responses to this proposal in general terms and to the specific proposals for new genera; together with new information regarding the biological properties and mode of origin of the Phytophthora clades. We consider that the proposals for new genera are mostly non-rigorous and not supported by the scientific evidence. Further, given (1) the apparent lack of any distinguishing biological characteristics (synapomorphies) between the Phytophthora clades; (2) the fundamental monophyly of Phytophthora in the original Haeckelian sense; (3) the fact that paraphyly is not a justification for taxonomic splitting; and (4) the considerable likely damage to effective scientific communication and disease management from an unnecessary break-up of the genus, we report that Workshop delegates voted unanimously in favour of preserving the current generic concept and for seeking endorsement of this view by a working group of the International Commission on the Taxonomy of Fungi. 
    more » « less
    Free, publicly-accessible full text available March 12, 2026